701,967 research outputs found

    Theories, models, simulations: a computational challenge

    Get PDF
    In this talk I would like to illustrate with examples taken from Quantum Field Theory and Biophysics how an intelligent exploitation of the unprecedented power of today's computers could led not only to the solution of pivotal problems in the theory of Strong Interactions, but also to the emergence of new lines of interdisciplinary research, while at the same time pushing the limits of modeling to the realm of living systems.Comment: 19 pages, 1 figure, conference pape

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    Computationally efficient stratified flow wet angle correlation for high resolution simulations

    Get PDF
    n high resolution two-phase pipe flow simulations, such as slug capturing simulation for liquid-gas pipe flow, explicit calculation of stratified flow wet angle has been proposed to improve computational speed of simulations. Most phenomenological and approximate models for obtaining reliable predictions for stratified flow wet angle employ iterative methods or contain long explicit equations which reduce computational efficiency of these models in high-resolution simulations. Therefore, the aim of this study is to adapt a simple mathematical model for predicting stratified flow wet angle to achieve computationally efficient high-resolution liquid-gas pipe flow simulations

    Observation of large-scale multi-agent based simulations

    Full text link
    The computational cost of large-scale multi-agent based simulations (MABS) can be extremely important, especially if simulations have to be monitored for validation purposes. In this paper, two methods, based on self-observation and statistical survey theory, are introduced in order to optimize the computation of observations in MABS. An empirical comparison of the computational cost of these methods is performed on a toy problem

    Sound Generation by a Turbulent Flow in Musical Instruments - Multiphysics Simulation Approach -

    Get PDF
    Total computational costs of scientific simulations are analyzed between direct numerical simulations (DNS) and multiphysics simulations (MPS) for sound generation in musical instruments. In order to produce acoustic sound by a turbulent flow in a simple recorder-like instrument, compressible fluid dynamic calculations with a low Mach number are required around the edges and the resonator of the instrument in DNS, while incompressible fluid dynamic calculations coupled with dynamics of sound propagation based on the Lighthill's acoustic analogy are used in MPS. These strategies are evaluated not only from the viewpoint of computational performances but also from the theoretical points of view as tools for scientific simulations of complicated systems.Comment: 6 pages, 10 figure files, to appear in the proceedings of HPCAsia0

    Computational Thermodynamics and Kinetics in Materials Modelling and Simulations

    Get PDF
    Over the past two decades, Computational Thermodynamics and Kinetics have been tremendously contributed to materials modeling and simulations and the demands on quantitative conceptual design and processing of various advanced materials arisen from various industries and academic institutions involved in materials manufacturing, engineering and applications are still rapidly increasing
    • …
    corecore